Open Structure: Ontology Repair Plan based on Atomic Modeling

Jos Lehmann joint work with Alan Bundy and Michael Chan

School of Informatics, University of Edinburgh

ARCOE 2009

- Overview GALILEO Project
 - Ontology Evolution in Physics
- 2 A Case Study in Atomic Modeling
 - From Thomson's to Rutherford's atom
- 3 Ontology Repair Plan based on Case Study
 - Open Structure
- Discussion
 - Future work

GALILEO project and Ontology Evolution in Physics

Overview GALILEO Project

- Aim: solving contradictions between multiple ontologies.
 - Canonical case: contradictions in physics between theoretical expectations and experimental observations.
- Main results: Ontology Repair Plans (ORPs).
 - Trigger: detects contradiction between ontologies.
 - Repair: changes ontology axioms or signature.
 - Create New Axioms: propagates changes as needed.
- Methodology: turn case studies in physics history into ORPs.
 - Extract ORP's conceptual backbone from case study.
 - Represent ORP in higher-order logic.
 - Implement ORP (λ Prolog and beyond).
- Some ORPs and their state of development.
 - Developed and tested: Where's My Stuff?, Inconstancy, Unite.
 - Being tested: Open Structure, Close Structure.
 - Under development: Unify.

Thomson's atom (1904) and Rutherford's atom (1911)

- 11 electron atom and 15 electron atom.
- Black dots and circumferences represent negative charges and their orbits/rings.
- Red circles represent positive charge (more intense where darker).
- Note that Rutherford's atom's structure is monotonic: Thomson's atom's configuration changes when electrons are added, Rutherford's atom's configuration is stable.

Rutherford's scattering apparatus (1898-1911)

- R, fixed source of α -particles (double positive charges).
- D, collimating diaphragm.
- F, fixed foil.
- S, screen.
- M. microscope.
- Chamber is evacuated and can be rotated around F.
- Original image in (Geiger, 1913), downloaded from. http://galileo.phys.virginia.edu

Expected vs observed scattering

Observed Scattering

- Red spots and lines are α-particles and their paths.
- Half-dashed thin red lines are ideal undeflected paths.
- b's and -b's are impact parameters (b = 0 for third particle).
- r's are distances between a point of the atom's electric field and the atom's center.
- R is the atom's radius.
- th's are scattering angles.
- Expected scattering is minimal.
- Observed scattering is minimal, large or a complete rebound.

The nucleus

Overview GALILEO Project

- The nucleus explains the difference between expectations and observations.
- The nucleus entails different deflection functions:
 θ(b)_{Thomson} and θ(b)_{Rutherford} calculate different deflection angles for same b's.
- The nucleus also entails different scattering potential functions:
 V(r)_{Thomson} and V(r)_{Rutherford} calculate different amounts of work excerted by positive electric fields when deflecting incident particles at same distance r.

Observed Scattering

Scattering potential functions for different structures

$$V(r)_{\textit{Thomson}} = \left\{ \begin{array}{ll} \frac{\mathcal{Q}_A \mathcal{Q}_B}{4\pi\epsilon_0} \, \frac{1}{r} & R \leq r \\ \\ \frac{\mathcal{Q}_A \mathcal{Q}_B}{4\pi\epsilon_0} \, \frac{1}{2R^3} (3R^2 - r^2) & 0 \leq r \leq R \end{array} \right.$$

$$V(r)_{Rutherford} = rac{Q_A Q_B}{4\pi\epsilon_0} rac{1}{r}$$

where Q_A is the charge of incident particle, Q_B is the charge of the target atom, $1/4\pi\epsilon_0$ is the Coulomb constant, r is the distance between the incident particle and the centre of the target atom. R is the radius of the target atom.

- $V(r)_{Thomson}$ is both non-Coulombic (i.e. for values of r lower than the atom's radius R, the potential is directly proportional to r) and Coulombic (i.e. for values of r higher than R, the potential is inversely proportional to r).
- V(r)_{Rutherford} is only Coulombic (R needs not to be considered).
- Formulae taken from (Zoli, 1998)

Evolution of V(r) by existing ORPs

$$V(r)_{\textit{Thomson}} = \left\{ \begin{array}{ll} \frac{\mathcal{Q}_A \mathcal{Q}_B}{4\pi\epsilon_0} \, \frac{1}{r} & R \leq r \\ \\ \frac{\mathcal{Q}_A \mathcal{Q}_B}{4\pi\epsilon_0} \, \frac{1}{2R^3} (3R^2 - r^2) & 0 \leq r \leq R \end{array} \right.$$

$$V(r)_{Rutherford} = \frac{Q_A Q_B}{4\pi\epsilon_0} \frac{1}{r}$$

- Where is my stuff? would stick to Thomson's atomic structure by increasing Q_A and yielding evolution $V(r) := V(r)_{vis} + V(r)_{invis}$. Problem: how would the additional charge be distributed wrt R?
- Unite, the inverse of Where is my stuff?, would not be able to let V(r) evolve.
- Incons too would stick to Thomson's atomic structure and let V(r) evolve in such a way that the Coulomb constant $1/4\pi\epsilon_0$ would depend on distance r from the center of atom. This would yield a very complicated structure.
- Need for an ORP that handles structural evolution as such, rather than by pivoting on quantities.
- Formulae taken from (Zoli, 1998)

Trigger:
$$O_t \vdash d_4 > d_3 \geq cop \geq d_2 > d_1 \land$$

 $((stuff(d_2) > stuff(d_1) \land stuff(d_3) > stuff(d_4)) \lor$
 $(stuff(d_1) > stuff(d_2) \land stuff(d_4) > stuff(d_3))).$
 $O_s \vdash \forall d, d' : \delta. \ d' > d \rightarrow stuff(d) > stuff(d').$

- stuff represents function subject to evolution (V is stuff).
- stuff ranges over a type δ of d's (like V ranges over the type dis of distances r's).
- stuff's domain contains a cut-off point cop (like V's domain contains R).
- K is constant (like all other quantities remain constant throughtout V's evolution).
- Two cases of contradiction:

crested* vs open structure In O_t , for all arguments below cut-off point, value of stuff is directly proportional to argument, inversely proportional otherwise. In O_s value of stuff is always inversely proportional to argument.

trenched* vs open structure In O_t , for all arguments below cut-off point, value of *stuff* is inversely proportional to the argument while, directly proportional otherwiset. O_s is the same as in the first case above

*tentative term

Open Structure ORP: Repair & Create New Axioms

Open Structure : $\nu(stuff) ::= \lambda d : \delta . K/d$.

Create New Axioms :
$$Ax(\nu(O_t)) ::= Ax(O_t) \setminus \{stuff ::= \lambda d : \delta. \ (cop > d \land Kd) \lor K/d\} \cup \{\nu(stuff) ::= \lambda d : \delta. \ K/d\}.$$

$$Ax(\nu(O_s)) ::= Ax(O_s) \setminus \{stuff ::= \lambda cop, d : \delta. \ (cop > d \land Kd) \lor K/d\} \cup \{\nu(stuff) ::= \lambda d : \delta. \ K/d\}.$$

Contradiction always repaired according to what dictated by O_s .

Overview GALILEO Project

$$\textbf{Substitution}: \left\{ V/\textit{stuff} \,, \textit{d}_i/\textit{r}_i, \textit{cop}/\textit{R}, \textit{K}/\frac{\textit{Q}_A\textit{Q}_B}{4\pi\epsilon_0} \right\}$$

Trigger:
$$O_t \vdash r_4 > r_3 \ge R \ge r_2 > r_1 \land ((V(r_2) > V(r_1) \land V(r_3) > V(r_4))$$

 $O_s \vdash \forall r, r' : dis. \ r' > r \to V(r) > V(r').$

New Axioms :
$$Ax(\nu(O_t)) ::= Ax(O_t) \setminus \{V ::= \lambda r : dis. \ (R > r \wedge Kr) \vee K/r\} \cup \{\nu(V) ::= \lambda r : dis. \ K/r\}.$$

$$Ax(\nu(O_s)) ::= Ax(O_s) \setminus \{V ::= \lambda r : dis. \ (R > r \wedge Kr) \vee K/r\} \cup \{\nu(V) ::= \lambda r : dis. \ K/r\}.$$

Future work

Overview GALILEO Project

- Find other cases for application of Open Structure.
- Interpret its inverse, Close Structure, and find cases of application.
- Alternative treatment of Thomson vs Rutherford case study: modeling the evolution between the two atoms in terms of their different deflection functions.

